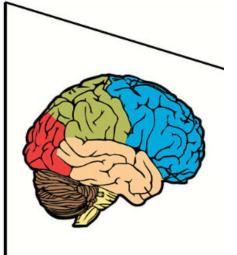
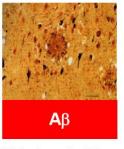


Increasing Efficiency, Safety, and Speed in Clinical Trials for Neurodegenerative Diseases


Diane Stephenson, PhD, Executive Director, Critical Path for Parkinson's March 17-19, 2019; ADDF

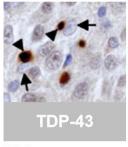
Genetics and new biology is highlighting important targets for intervention



Protein misfolding plays a key role in neurodegeneration

Four major pathologies are linked to the majority of human neurodegenerative disease

- Neurodegenerative disorders
- Alzheimer's disease
- Parkinson disease
- Amyotrophic lateral sclerosis
- Huntington disease
- ☐ Disease related genomics
- ☐ What molecules to be target?


Alzheimer's Disease

Alzheimer's Disease PSP¹ CBD FTLD-tau² Pick's Disease Parkinson's Disease CTE

Parkinson's Disease Alzheimer's Dis. (LBV) Diffuse Lewy Body Dis. Multiple system atrophy

ALS
Alzheimer's Dis. (Hipp Scl)
FTLD-tdp (types 1-4)
Perry Syndrome

Target Selection

2

Yet.....New Approaches are Needed to Tackling Drug Development Challenges

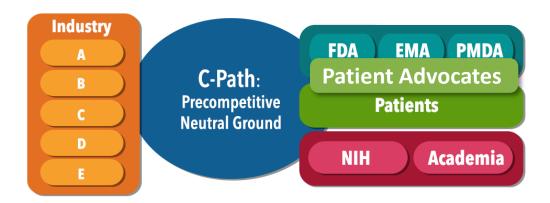
Traditional Drug Development

Approach

Reliance on limited information and experience based on:

- A small set of KOLs
- Small, possibly outdated, datasets
- Last paper bias

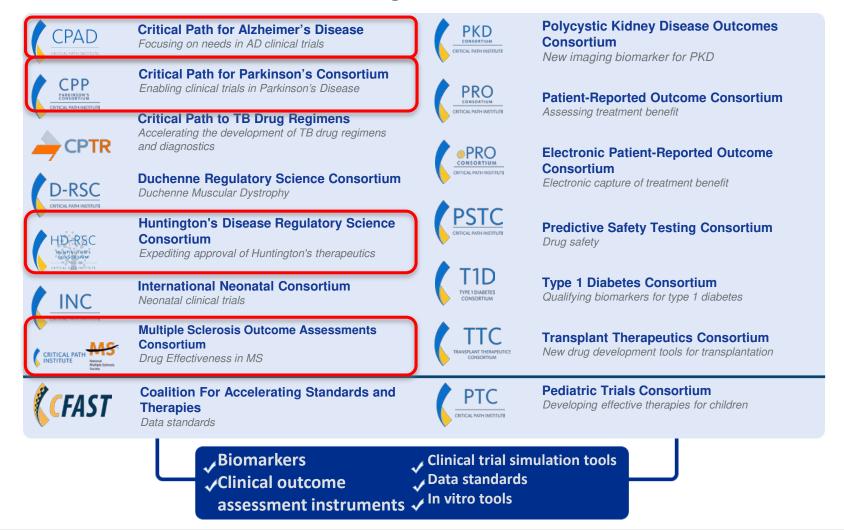
Data and Quantitative Model Based Drug Development Approach


A modern approach based on:

- Integrated global datasets including relevant populations and endpoints
- Quantitative models of disease progression, patient population and endpoint behavior

Critical Path Institute: A Public Private Partnership

- Act as a trusted, neutral third party
- Convene scientific consortia of industry, academia, and government for sharing of data/expertise
 - ✓ The best science
 - ✓ The broadest experience
 - ✓ Active consensus building
 - ✓ Shared risk and costs



- Enable iterative EMA/FDA/PMDA participation in developing new methods to assess the safety and efficacy of medical products
- Official regulatory endorsement of novel methodologies and drug development tools

Critical Path Institute Consortia



Fifteen global consortia collaborating with 1,450+ scientists and 84 organizations

C-Path Core Competencies

Development of Open Access Global Consensus Data Standards

Therapeutic Area Data Standards User Guide for Alzheimer's Disease and Mild Cognitive Impairment Version 2.0

Prepared by the CFAST Alzheimer's Development Team

Therapeutic Area User Guide for Parkinson's Disease

Prepared by
CDISC, National Institute of Neurological
Disorders and Strokes (NINDS) and the Coalition
Against Major Diseases (CAMD)

Therapeutic Area Data Standards User Guide for Multiple Sclerosis

Version 1.0

Therapeutic Area User Guide for Huntington's Disease

Version 1.0 (Draft)

Prepared by the CFAST Huntington's Disease Standards Team

Prepared by the

Multiple Sclerosis Outcome Assessments Consortium and the CFAST Multiple Sclerosis Development Team

Neuroscience Consortia Unified Databases Available to Qualified Researchers

Research Article

Data Shared from 28 Trials with 6995 patients

Development of a unified clinical trial database for Alzheimer's disease

Jon Neville^a, Steve Kopko^b, Steve Broadbent^a, Enrique Avilés^a, Robert Stafford^a, Christine M. Solinsky^c, Lisa J. Bain^d, Martin Cisneroz^a, Klaus Romero^a, Diane Stephenson^{a,*}, for the Coalition Against Major Diseases

MULTIPLE SCLEROSIS JOURNAL

Original Research Paper

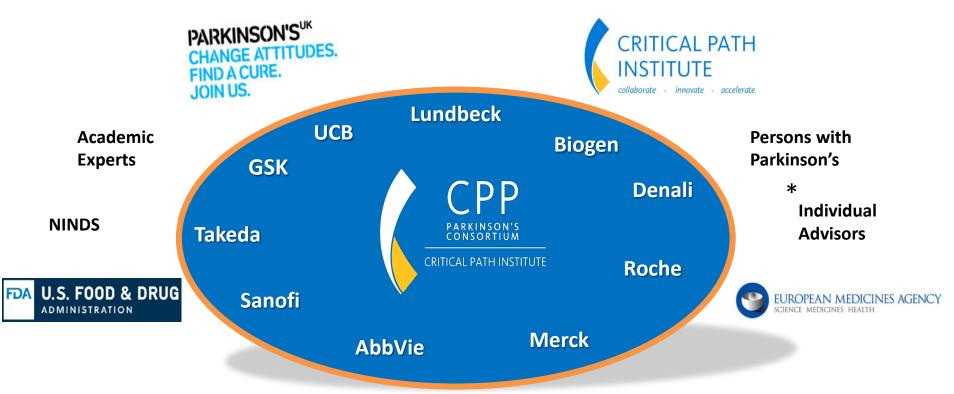
Data Shared from 16 Trials with 14,430 patients

The MSOAC approach to developing performance outcomes to measure and monitor multiple sclerosis disability

Nicholas G LaRocca, Lynn D Hudson, Richard Rudick, Dagmar Amtmann, Laura Balcer, Ralph Benedict, Robert Bermel, Ih Chang, Nancy D Chiaravalloti, Peter Chin, Jeffrey A Cohen, Gary R Cutter, Mat D Davis, John DeLuca, Peter Feys, Gordon Francis, Myla D Goldman, Emily Hartley, Raj Kapoor, Fred Lublin, Gary Lundstrom, Paul M Matthews, Nancy Mayo, Richard Meibach, Deborah M Miller, Robert W Motl, Ellen M Mowry, Rob Naismith, Jon Neville, Jennifer Panagoulias, Michael Panzara, Glenn Phillips, Ann Robbins, Matthew F Sidovar, Kathryn E Smith, Bjorn Sperling, Bernard MJ Uitdehaag and Jerry Weaver; for the Multiple Sclerosis Outcome Assessments Consortium (MSOAC)

Multiple Sclerosis Journal

1352458517723718


The Author(s), 2017.

Reprints and permissions: http://www.sagepub.co.uk/ journalsPermissions.nav

Critical Path for Parkinson's Consortium – Accelerating therapies for PD

Patient-Advocacy Organizations

- Parkinson's Foundation
- Michael J. Fox Foundation
- Davis Phinney Foundation
- The Cure Parkinson's Trust

Academic Institutions

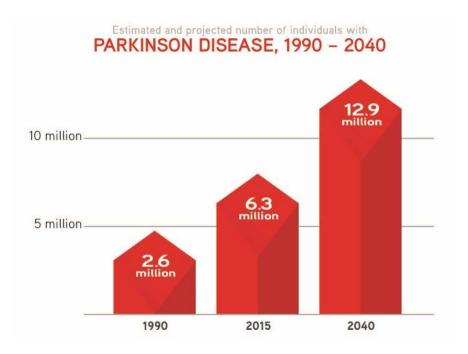
- University of Oxford
- University of Cambridge
- Newcastle University
- University of Glasgow
- Radboud University

^{*}CPP Scientific Advisors: Ray Dorsey, Bas Bloem, Ken Marek, John Seibyl, Bas Bloem, Karl Kieburtz, Charles Venuto, Mark Gordon, David Russell, Brit Mollenhauer, Derek Hill, Glenn Stebbins, Spyros Papapetropoulos, Patrick Howson, Michael Schwarzchild

Growing Burden of Parkinson's Disease

URMC / News / Parkinson's Disease: A Looming Pandemic

Make a Gift


Parkinson's Disease: A Looming Pandemic

Monday, November 13, 2017



Source: Dorsey ER, Bloem BR, The Parkinson Pandemic: a call to action. JAMA Neurology 2017

We can Learn from Past Clinical Trials?

'Pre-competitive' Collaboration

Working together to solve these problems and create tools that will benefit the whole community.

Many Promising New Therapies are in the Pipeline

VIEWPOINT

New Drugs for Parkinson's Disease: The Regulatory and Clinical Development Pathways in the United States

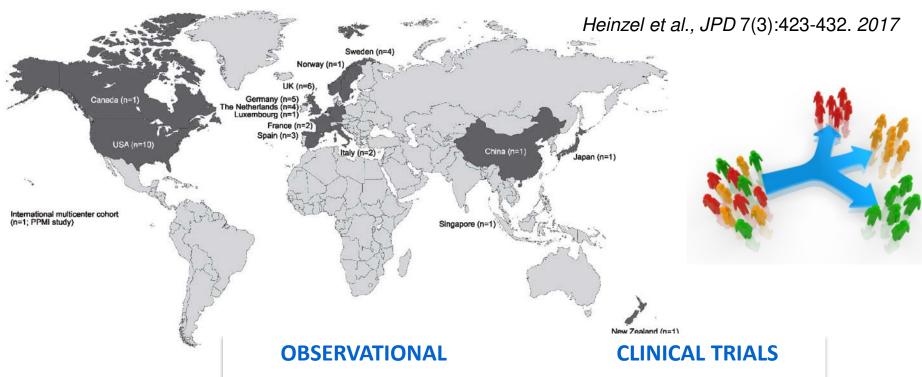
Karl Kieburtz, MD, 1,2 Russell Katz, MD,1 and C. Warren Olanow, MD1,3*

TABLE 1. Selected promising therapies for PD that are in the pipeline^a

Name	Sponsor	Mechanism/Indication	Stage	Regulatory Comments ^b
Short-term benefits or	"Symptomatic"			
Opicapone	Bial	COMT inhibitor	III	Approved in Europe
Istradefylline	Kyowa-Kirin	A2A antagonist	III	Approved in Japan
Tozadenant	Acorda	A2A antagonist	III	505B1 pathway
CVT 301	Acorda	Inhaled L-dopa	III	505B2 pathway
APL130277	Sunovion	Sublingual apomorpine	III	Fast track
Amantadine ER	Adamas	NMDA antagonist for dysk	III	505B2 pathway
P2B001	Phama2B	Low-dose prami/rasag combo	III	505B2 pathway
ND0612	Neuroderm	SC L-dopa/carbidopa	III	BE/505B2 pathway
Apo Infusion	USWM	Apomorphine infusion	III	505B2 pathway
Accordion pill	Intec	Long-acting L-dopa	III	505B2 pathway
PF-06649751	Pfizer	D1 agonist	IIB	505B1
LU-AE04621	Lundbeck	D1 agonist	IIB	505B1
SER-214	Serina	polymer-linked rotigatine	IIB	BE/505B2 pathway
AAV2-hAADC	Voyager	AAV2-gene delivery of AADC	I	Submitted through CBER
Light therapy	Photopharmics	Altered circadian rhythm	I	Device pathway
Dopafuse	Synagile	Continuous oral L-dopa delivery	I	Drug/device (505B2)
Disease modifying				
Isradipine	NIH	Ca+ + channel blocker	III	505B2
Inosine	NIH	Increase Urate as antioxidant	III	505B2
Nicotine Patch	Fox	Enhance nicotine levels	I	505B2
Affitope	Afferis	ImmunoRx target alpha syn	I	505B1 submitted through CDEF
PRX002	Prothena	Monoclonal AB to alpha syn	lla	505B1 submitted through CDEF
BIIB054	Biogen	ImmunoRx target alpha syn	lla	505B1 submitted through CDEF
NPT 200-11	UCB	Antialpha syn aggregate	I	505B1
Nilotinib	Fox	CAbl kinase inhibitor	I	505B2 (approved in leukemia)
GZ/*SAR402671	Genzyme/Sanofie	GBA enhancer	II	505B1
Ambroxol	Weston Found	Enhances GCase activity	II	505B1
Exenatide	Cure PD Trust	Glucagon-like peptide 1	I	505B2
Deferiprone	APO Pharma	Iron chelator	I	505B2

"A better appreciation of regulatory pathways and requirements by scientists, clinical Investigators, and the pharmaceutical industry will likely help reduce the cost and time of Drug Development, and speed the approval process"

What Could We Do if We Had All the Data from Parkinson's Studies in One Place?


Data from clinical trials and cohorts

Standardization Researchers Regulators Industry

CDISC Data Standards

CPP has Gathered Data from 8100 people with Parkinson's From Around the World

PARKINSON'S^{UK}
CHANGE ATTITUDES.
FIND A CURE.
JOIN US.

PPMI (n=1223)

CamPaIGN (n=142)

OPDC Discovery Cohort (n=877)

ICICLE (n=314)

Tracking Parkinson's (n=1998)

PRECEPT (n=806)

ADAGIO (n=1170)

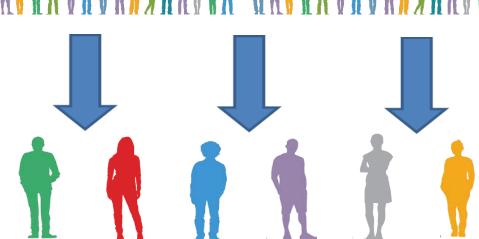
DATATOP (n=800)

ELLDOPA (n=361)

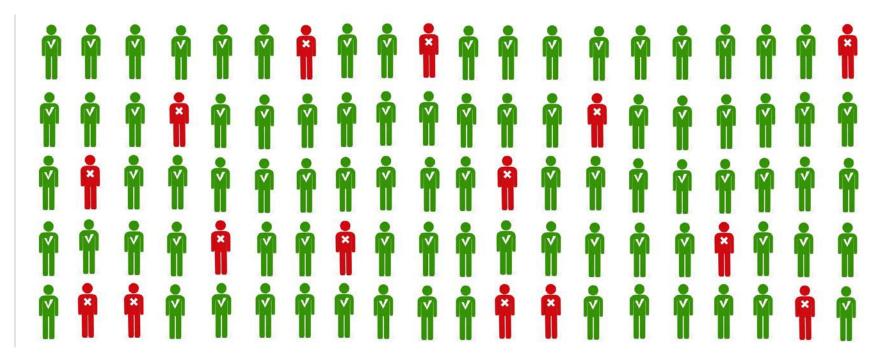
FS-! (n=200)

FS-Too (n=213)

TOTAL NUMBER OF SUBJECTS: 8104


Future Model of Parkinson's Therapies

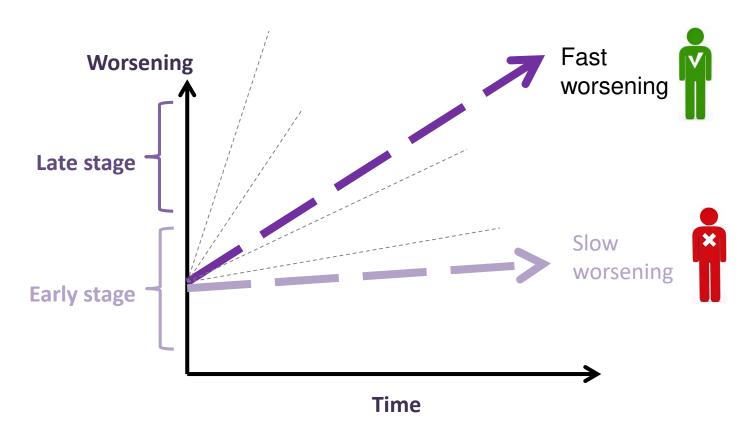
Parkinson's - Not all one flavor


Personalized Medicine targeted treatments

As modified from Alberto Espay

Up to 15% of People with Early Parkinson's who Take Part in Trials May Not Have the Disease

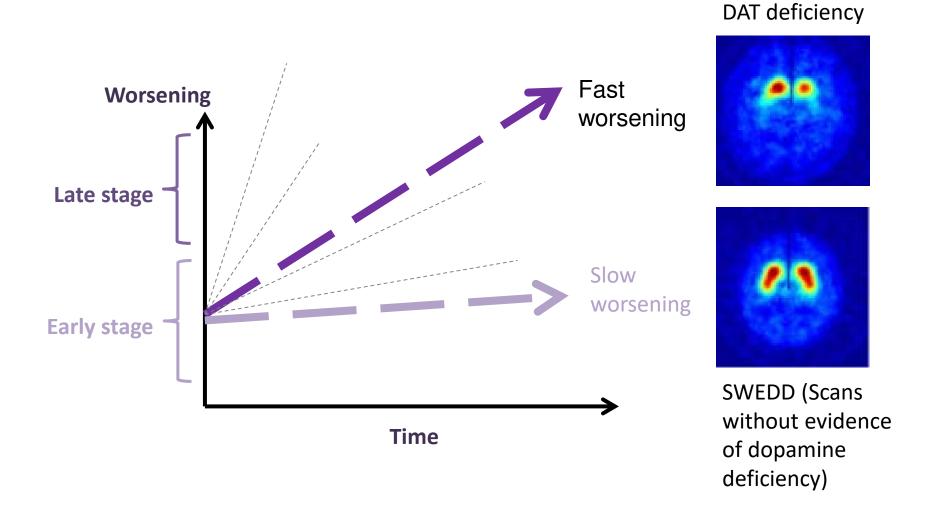
See:


Beach and Adler, Importance of low diagnostic Accuracy for early Parkinson's disease.

Mov Disord. 2018; 33(10):1551-1554

Beth Vernaleo, Parkinson's Disease Foundation

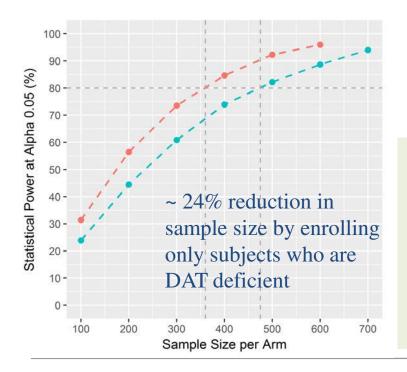
Rate of Disease Progression Varies...

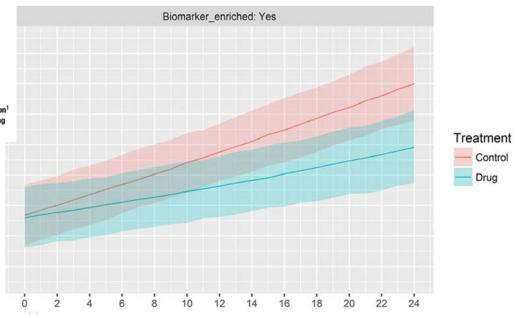


Can Biomarkers and Genetics help to determine rates of decline?

Using Imaging to Predict the Future

Enrichment Allows Meaningful Reduction of Trial Size


Citation: Clin Transl Sci (2017) 00, 1–8; doi:10.1111/cts.12492 © 2017 ASCPT. All rights reserved


ARTICLE

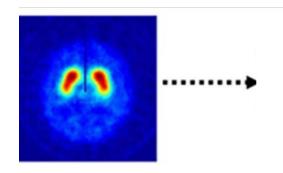
Dopamine Transporter Neuroimaging as an Enrichment Biomarker in Early Parkinson's Disease Clinical Trials: A Disease Progression Modeling Analysis

Daniela J. Conrado^{1,a}, Timothy Nicholas², Kuenhi Tsai³, Sreeraj Macha³, Vikram Sinha³, Julie Stone³, Brian Corrigan², Massimo Bani⁴, Pierandrea Muglia¹, Ian A. Watson⁵, Volker D. Kern¹, Elena Sheveleva^{1,6}, Kenneth Marek⁷, Diane T. Stephenson¹ and Klaus Romero¹ on behalf of the Critical Path for Parkinson's (CPP) Parkinson's Disease Modeling and Simulation Working Group

Clin Transl Sci. 2018 Jan;11(1):63-70

Under these assumptions:

- 24-month placebo-controlled parallel group trial.
- Enriched trial had only subjects with DAT deficit, while non-enriched trial included 15% of SWEDD.
- Drug effect of 50% reduction in the progression rate.
- Power was calculated as the proportion of trials for which the effect of treatment on progression rate was beneficial with a two-tailed P-value < 0.05.


Using Imaging as an Enrichment Biomarker in Trials Regulatory Endorsement by EMA and FDA

29 May 2018 EMA/CHMP/SAWP/765041/2017 Committee for Medicinal Products for Human Use (CHMP)

Qualification opinion on dopamine transporter imaging as an enrichment biomarker for Parkinson's disease clinical trials in patients with early Parkinsonian symptoms

Normal brain scan (no dopamine deficiency)

DEPARTMENT OF HEALTH & HUMAN SERVICES

March 16, 2015

PUBLIC HEALTH SERVICE

Food and Drug Administration Center for Drug Evaluation and Research 10903 New Hampshire Avenue Silver Spring, MD 20993

Date:

Subject:

ATTN: Diane Stephenson, Ph.D.


Executive Director, Coalition Critical Path Institute 1730 E River Rd. Tucson, Arizona 85718

Biomarker Letter of Support

Janet Woodcock, M.D.

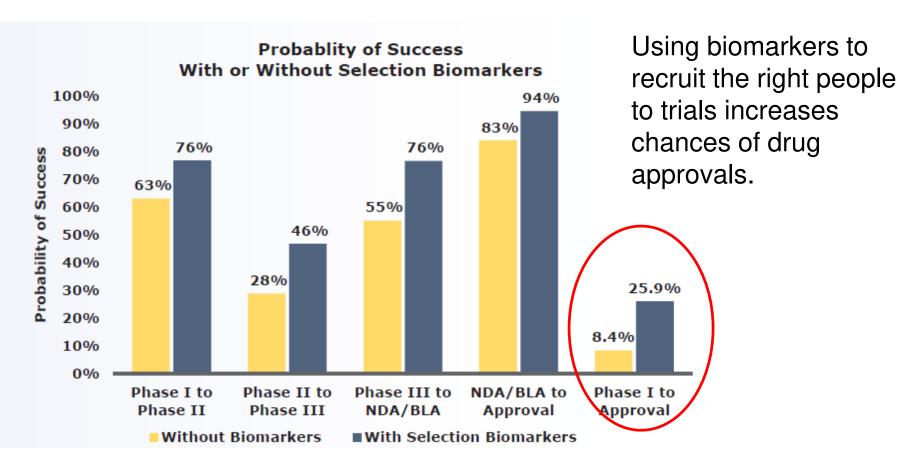
Director, CDER

U.S. Food and Drug Administration

Dopamine deficiency consistent with Parkinson's

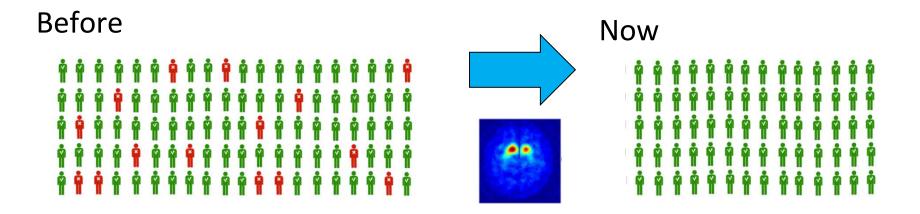
ANNOUNCEMENTS

July 26, 2018 PRINT PDF


First-ever biomarker qualified for Parkinson's is a vital step toward improved clinical trials

RELATED PC

What Impact Could This Make?

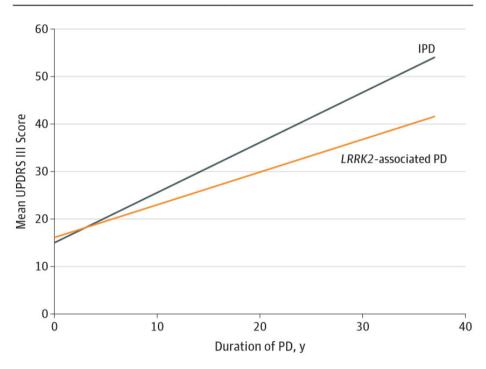


Amplion/BIO report, 2016

Critical Path for Parkinson's is **Enabling Precision Medicine Strategies**

Selecting more appropriate subjects for clinical trials will reduce the numbers needed and make trials more efficient.

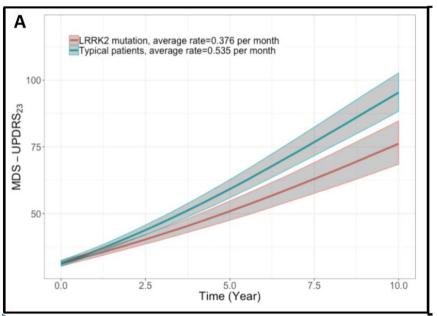
CPP Integrated Database Contains Rich Genetic Information


Gene	Study						
	CamPalGN	ICICLE	Oxford	Tracking-PD	PPMI		
APOE	n = 125	n = 292	n = 732	n = 1831	n = 619		
COMT	n = 129	n = 293	n = 729	n = 1831	n = 915		
GBA	n = 114	n = 236	n = 727	n = 1831	n = 922		
LRRK							
2	n = 139	n = 293	n = 725	n = 1831	n = 1184		
MAPT	n = 128	n = 291	n = 735	n = 1831	n = 922		
SNCA	n = 125	n = 293	n = 729	n = 1831	n = 923		

Total number of subjects with genetic information: ~4180

Genetic Data Can be Used to Define PD Endophenotypes with Distinctive Progression Rates

Figure 1. Longitudinal Trajectories of Mean Unified Parkinson's Disease Rating Scale III (UPDRS III) Scores for Patients With Parkinson Disease (PD) Who Carry the Leucine-Rich Repeat Kinase 2 (*LRRK2*) Mutation Compared With Patients With Idiopathic PD (IPD)

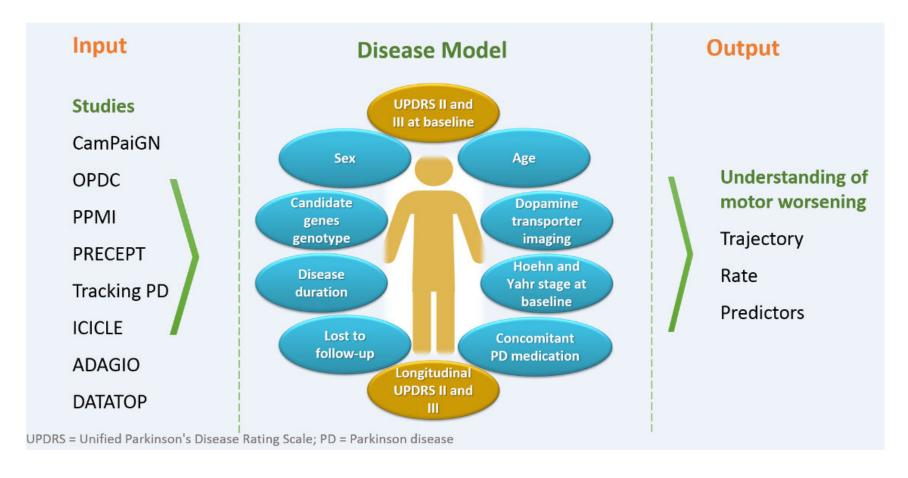


Saunders-Pullman, R., et al., (2018). Progression in the *LRRK2* -Asssociated Parkinson Disease Population. *JAMA Neurology*, 75(3), 312.

Disease Progression model platform to inform efficient clinical trial design for Parkinson's Disease

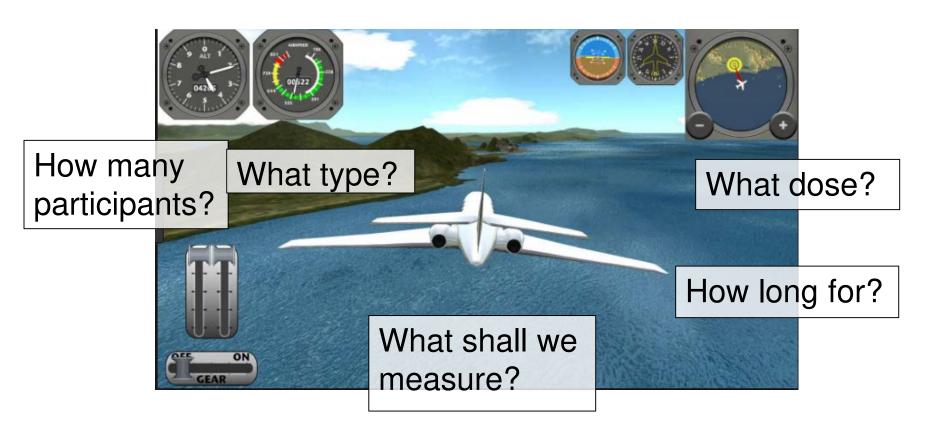
Malidi Ahamadi, Merck Research Laboratories

Presentation at 9^{th} American Conference on Pharmacometrics (ACoP9), San Diego, CA



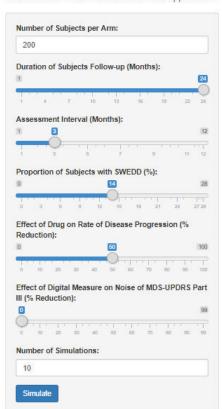
On behalf of Malidi Ahamadi, Merck And the CPP modeling and

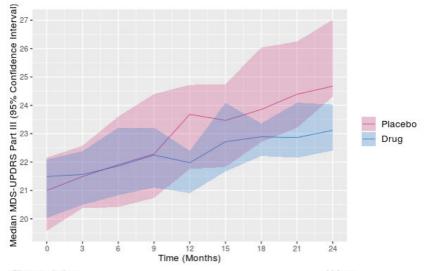
Development of PD Drug-Disease-Trial Model Model Informed Drug Development



 Using computerized models to simulate different 'what if' scenarios aimed at identifying the *right drug*, *right patient at the right time*

The Future: A Trial 'Flight Simulator'?


PD Clinical Trial Simulator— DAT imaging for enrichment



DAT Neuroimaging-Informed Early PD Clinical Trial Simulator - Version 1.0

Simulate clinical trials on patients with early-stage Parkinson disease

Click here for more information on this application.

Characteristics	Values	
Study Design	Placebo-Controlled Parallel Group	
Total Number of Subjects	400	
Study Duration (Months)	24	
Assessment Interval (Months)	3	
Effect of Drug on Rate of Disease Progression (% Reduction)	50	
Effect of Digital Measure on Noise of MDS-UPDRS Part III (% Reduction)	0	
Proportion of SWEDD (%)	14	
Proportion of Female (%)	34	
Median age (95% Confidence Interval) (Years)	62 (61, 63)	
Number of Simulations	10	
Monte-Carlo Standard Error for Calculation of Confidence Interval for Statistical Power (%)	12.6	
Statistical Power (%, 95% Confidence Interval)	80 (44.4, 97.5)	

This Has Been Achieved for Alzheimer's Disease: Other Diseases are Waiting

The Future Is Now: Model-Based

Clinical Trial Design for Alzheimer's Disease

Clin Pharmacol Ther. 2015 Mar;97(3):210-4

K Romero¹, K Ito², JA Rogers³, D Polhamus³, R Qiu², D Stephenson¹, R Mohs⁴, R Lalonde², V Sinha⁵, Y Wang⁵, D Brown⁶, M Isaac⁶, S Vamvakas⁶, R Hemmings⁶, L Pani⁶, LJ Bain¹, B Corrigan², for the Alzheimer's Disease Neuroimaging Initiative* for the Coalition Against Major Diseases**

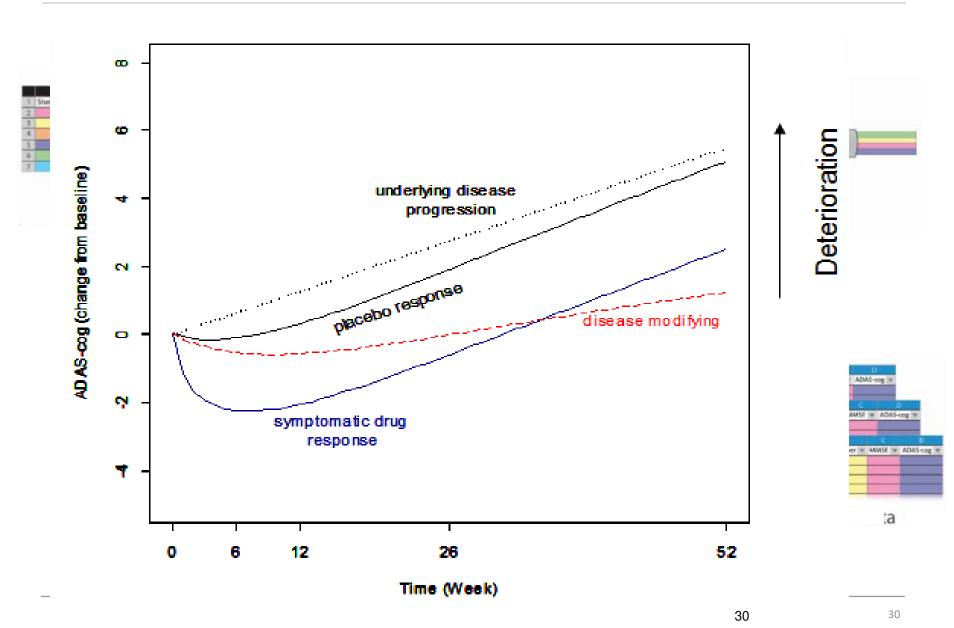
"Model-based drug development was one of the goals defined in FDA's 2004 Critical Path Initiative report, and this new tool sets the stage for applying new technologies to accelerating medical product development," Janet Woodcock, FDA

THE WALL STREET JOURNAL.

JOURNAL REPORTS: HEALTH CARE

Simulators Help Build a Better Drug Trial

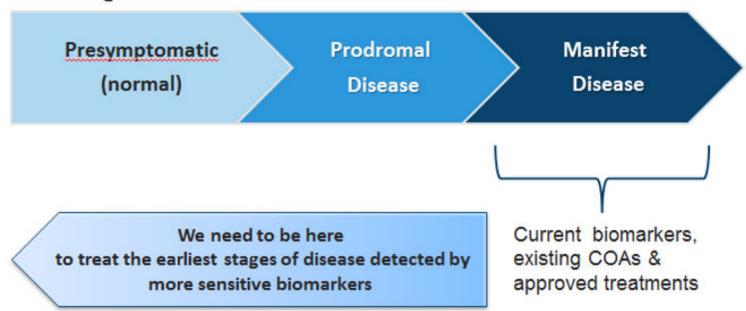
Pharmaceutical firms start to use powerful computer programs to improve human testing


By JONATHAN D. ROCKOFF

Nov. 17, 2013 4:07 p.m. ET

AD Clinical Drug Disease Trial Model

FDA and EMA Endorsed in 2013



The Future Vision for Treating Nervous System Disorders

The Progression of Chronic CNS Diseases

Stephenson and Arneric,
<u>Translational Medicine in CNS Drug Development</u>
In press (Elsevier, Feltner and Nomikos Eds)

*COA = clinical outcome assessments

FDA Early Alzheimer's Disease Guidance

Early Alzheimer's Disease: Developing Drugs for Treatment Guidance for Industry

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this draft document should be submitted within 90 days of publication in the Federal Register of the notice amouncing the availability of the draft guidance. Submit electronic comments to thtps://www.regulations.gov. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register.

For questions regarding this draft document, contact (CDER) Billy Dunn at 301-796-2250 or (CBER) Office of Communication, Outreach, and Development at 800-835-4709 or 240-402-8010.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)
Center for Biologics Evaluation and Research (CBER)

February 2018 Clinical/Medical

Revision 1

15063dft.do 01/29/18

Although the issues and approaches discussed above for Stage 2 patients are relevant for Stage 1 patients, there is unfortunately at present no sufficiently reliable evidence that any observed treatment effect on such biomarker measures would be reasonably likely to predict clinical benefit (the standard for accelerated approval), despite a great deal of research interest in understanding the role of biomarkers in AD. FDA strongly supports and encourages continued research in this area and stresses its potential importance in the successful development of effective treatments appropriate for use in the earliest stages of AD. Precompetitive structured sharing across the AD scientific community of rigorously collected standardized data is a crucial component of this research. While research pursues the development of evidence sufficient to support the use of biomarker measures as the primary evidence supporting an accelerated approval, or perhaps a full approval if the fundamental understanding of AD evolves sufficiently to establish surrogacy, a possible approach to Stage 1 patients might be to conduct a study of sufficient duration to allow the evaluation of the measures discussed above for Stage 2 patients. As patients transition to Stage 2 during participation in the trial, the principles applicable to outcome assessment for Stage 2 would apply.

February 15, 2018

Remarkable Advances in Huntington's Disease:

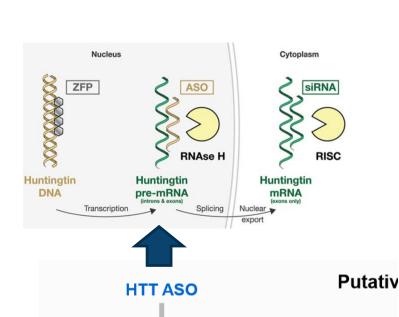
A Flagship Disease for Early Intervention

DRUG DEVELOPMENT

C&EN April 2017

A new day for Huntington's disease

First agents to possibly slow or even reverse the disease enter clinical trials


TABLE 1 | SELECT LIST OF POTENTIALLY DISEASE-MODIFYING HUNTINGTON DRUGS IN DEVELOPMENT

Drug	Sponsor	Properties	Status
RG6042	Roche/Ionis Pharmaceuticals	HTT-lowering antisense	Phase III
WVE- 120101	WAVE Life Sciences/Takeda	mHTT-lowering antisense	Phase I/II
WVE- 120102	WAVE Life Sciences/Takeda	mHTT-lowering antisense	Phase I/II
AMT-130	uniQure	HTT-lowering miRNA	IND
VY- HTT01	Voyager Therapeutics/Sanofi/CHDI Foundation	HTT-lowering miRNA	IND in 2019
HTT Program	Exicure	HTT-targeted spherical nucleic acids	Preclinical
VX15	Vaccinex	Anti-semaphorin 4D mAb	Phase II

ognitive, oral and measures

, digital neasures

om S. Schobel entation and Tabrizi, 2014

HD mHTT protein

Key 'upstream' molecular

Disease

33

C-Path's Newest Consortium Huntington's Disease Regulatory Science Consortium

Accelerating therapeutic development for Huntington's disease

DATA

HD Modeling

Biomarkers (Biofluid & Imaging)

Clinical Outcome
Assessments

Regulatory
Science Forum

Progress in HD will Inform Therapeutics Across Neurodegenerative Diseases

REVIEWS

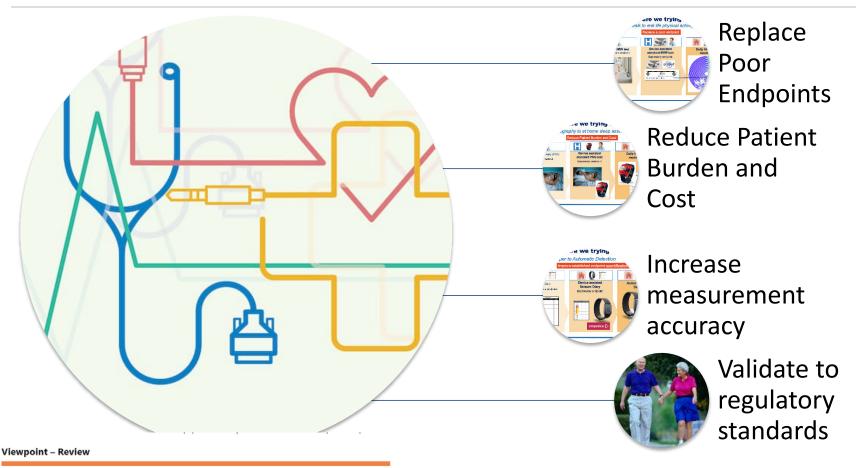
Therapeutic approaches to Huntington disease: from the bench to the clinic

Nicholas S. Caron¹, E. Ray Dorsey² and Michael R. Hayden^{1,3,4*}

Nat Rev Drug Discovery

"With clinical trials for many of these approaches imminent or currently ongoing, the coming years are promising not only for HD but also for more prevalent neurodegenerative disorders, such as Alzheimer and Parkinson disease, in which many of these pathways have been similarly implicated."

Call to Action!


 Collaboration around the world and data is urgently needed to speed the path to effective treatments and embrace personalized medicine for Neurodegenerative disease

CPP Turns Attention to Digital Technologies

The First Frontier: Digital Biomarkers for Neurodegenerative Disorders

IMI DIAMOND

E. Ray Dorsey^{a, b} Spyros Papapetropoulos^{c, d} Mulin Xiong^b Karl Kieburtz^{a, b}

Jesse Cedarbaum, CPP Industry Co-director

Digit Biomark 2017;1:6-13

We are recruiting: Scientific Director, Quantitative Medicine team

Klaus Romero
Clinician who
appreciates numbers

Daniela Conrado
Pharmacometrician
extraordinaire

JD Podichetty
Predictive analyst
engineer who does
pharmacometrics

Jackson Burton
Mathematician who
appreciates
pharmacology

Acknowledgements

Critical Path for Parkinson's Consortium

Steve Ford, Jill Gallagher, David Dexter Jesse Cedarbaum, CPP Industry

Co-director

CRITICAL PATH INSTITUTE: Klaus Romero, Daniela Conrado, Bob Stafford, Mussie Akali,
Peggy Abbott, Michael Minchik, Martha Brumfield

Dr. Gerald Podskalny, Dr. Billy Dunn

Dr. Maria Tome

Thanks to the Food and Drug Administration for their significant funding of Critical Path Institute.

Summary

- Therapeutic targets for Neurodegeneration hold tremendous promise yet challenges lie ahead for treatments to reach the many people in need
- Critical Path Institute brings together the expertise and resources of multinational stakeholders to collaborate, share knowledge and data in order to develop and to enable improvements in drug development and regulatory decisionmaking
- Publicly available drug development tools are being created for Alzheimer's, Parkinson's, Multiple Sclerosis and Huntington's diseases in order to improve efficiency of clinical trials