A Clinical Reviewer’s Perspective on CIVM For Drug Development

Paul H. Hayashi, MD, MPH, FAASLD
Team Lead
Drug-Induced Liver Injury (DILI) Team
Division of Hepatology and Nutrition
Food and Drug Administration
Sep 29, 2023
Disclaimer and Disclosures

• The views and opinions in this presentation are my own and do not represent guidance or recommendations from the FDA.

• I have no disclosures, financial or otherwise, pertinent to this talk.
Outline

• Introduce the DILI Team
• Why non-clinical information matters to our team
• How we use non-clinical information now
The DILI Team Workspace
Interdisciplinary Division of Hepatology and Nutrition DILI Team

Office of Surveillance and Epidemiology

Pre-market Post-market
The DILI Team

DILI Team
- Paul H. Hayashi, MD, MPH
 - Team Lead
- Eileen Navarro, MD
 - Team Lead
- Ling Lan, MD, PhD
 - Clinical analyst
- Edwige Chiogo-Vouffo, PharmD, PhD
 - Non-clinical analyst

Mark Avigan, MD, CM
Office of Surveillance and Epidemiology

Minjun Chen, PhD
National Center for Toxicological Research (NCTR)

Frederick Moulin, PhD, DVM
Office of New Drugs
Division of Pharmacology
Workload for DILI Team through first quarter 2023

- NDA + BLA
- IND
- Other
- AC
- Total (not including ACs)
Overview

NON-CLINICAL (IN VITRO & ANIMAL STUDIES)

CLINICAL TRIALS

APPROVAL PROCESS

POST-MARKET ASSESSMENTS
Evaluation of Drug-Induced Serious Hepatotoxicity (eDISH)

“Finding one Hy’s Law case in the clinical trial database is worrisome; finding two is considered highly predictive that the drug has the potential to cause severe DILI when given to a larger population.”

FDA Guidance for Industry: DILI (2009)
Causality Scores: Body of Evidence

<table>
<thead>
<tr>
<th>Causality score</th>
<th>Likelihood (%)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = definite</td>
<td>>95</td>
<td>Liver injury is typical for the drug or herbal product ('signature' or pattern of injury, timing of onset, recovery). The evidence for causality is 'beyond a reasonable doubt'</td>
</tr>
<tr>
<td>2 = highly likely</td>
<td>75–95</td>
<td>The evidence for causality is 'clear and convincing' but not definite</td>
</tr>
<tr>
<td>3 = probable</td>
<td>50–74</td>
<td>The causality is supported by 'the preponderance of evidence' as implicating the drug but the evidence cannot be considered definite or highly likely</td>
</tr>
<tr>
<td>4 = possible</td>
<td>25–49</td>
<td>The causality is not supported by 'the preponderance of evidence'; however, one cannot definitively exclude the possibility</td>
</tr>
<tr>
<td>5 = unlikely</td>
<td><25</td>
<td>The evidence for causality is 'highly unlikely' based upon the available information</td>
</tr>
<tr>
<td>6 = insufficient data</td>
<td>Not applicable</td>
<td>Key elements of the drug exposure history, initial presentation, alternative diagnoses and/or diagnostic evaluation prevent one from determining a causality score</td>
</tr>
</tbody>
</table>

Diagnosis of DILI in clinical practice versus pre-market development

- Timing
- Pattern of Injury
- Exclusion of other causes
- Pre-event Risk of DILI

Expert opinion: Causality Score
How we use pre-test probability?

- **Pre-event likelihood**
 - High (amoxicillin-clavulanate)
 - Low (amlodipine)

- **Post-event data**
 - Timing
 - Pattern of injury
 - Exclusion of other causes

- **Predictive value of data**
 - High
 - Low

- **Highly likely amoxicillin clavulanate DILI**
- **Possible or unlikely DILI**
Can we use CIVM to inform pre-test probability?

Pre-event likelihood

Non-clinical/CIVM data

Post-event data

Timing

Pattern of injury

Exclusion of other causes

Predictive value of data

High

Low

+ -
Diagnosis of DILI in clinical practice versus pre-market development
Our Consults

Consultation Sections:
Section 1.0 Target Disease and Rationale
Section 2.0 ADME and DDI pertinent to DILI risk
Section 3.0 Non-clinical data pertinent to DILI
Section 4.0 Clinical data
Section 5.0 Assessment & Recommendations

3.0 Non-clinical Data

3.1 In vitro data:

3.2 Animal / Toxicology data

3.3 Summary of Non-clinical data

High level summary of non-clinical findings related to DILI risk is in Table 3.

Table 3: Summary of non-clinical data pertaining to DILI risk

<table>
<thead>
<tr>
<th>Item</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major CYPs or UGTs</td>
<td></td>
</tr>
<tr>
<td>Reactive metabolites (i.e., glutathione trapping)</td>
<td></td>
</tr>
<tr>
<td>Mitochondria studies/inhibition</td>
<td></td>
</tr>
<tr>
<td>Time dependent inhibition</td>
<td></td>
</tr>
<tr>
<td>LogP (lipophilicity) values >3 associated with increased DILI risk</td>
<td></td>
</tr>
<tr>
<td>Covalent binding</td>
<td></td>
</tr>
<tr>
<td>Transporter (BSEP or MRP2 inhibition)</td>
<td></td>
</tr>
<tr>
<td>Elevation in liver analytes (e.g., ALT, AP, TB)</td>
<td>Animal Studies</td>
</tr>
<tr>
<td>Liver histopathology findings (animal species)</td>
<td></td>
</tr>
</tbody>
</table>
A Model to Predict Severity of Drug-Induced Liver Injury in Humans

Minjun Chen, Jürgen Borlak, and Weida Tong

National Center for Toxicological Research (NCTR)

Predictors: Drug properties

- Daily drug dose
- Lipophilicity
- Reactive metabolites

Outcome: DILI risk based on labeling

- Most concern
 - Withdrawn
 - Box warning
 - W/P: Risk of severe liver injury
- Less concern
 - Less than severe liver injury risk
- No concern
 - No mention of liver injury risk

DILI score = 0.608*\log(\text{daily dose/mg}) + 0.227*\log P + 2.833*(\text{RM formation})
DILI Score Performance

Dose-based DILI Score

Most Less No

DILI risk category by labeling

High risk
Moderate risk
Low risk

P < 0.001

HEPATOLOGY, Vol. 64, No. 3, 2016
<table>
<thead>
<tr>
<th>Drug</th>
<th>Drug 1</th>
<th>Drug 2</th>
<th>Drug 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>In clinical trials</td>
<td>In clinical trials</td>
<td>In clinical trials</td>
</tr>
<tr>
<td>Target disease/Indication</td>
<td>Disease X</td>
<td>Disease Z</td>
<td>Disease X</td>
</tr>
<tr>
<td>Daily dose (mg/day)</td>
<td>150</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>LogP (lipophilicity)</td>
<td>3.8</td>
<td>2.8</td>
<td>4.3</td>
</tr>
<tr>
<td>Reactive metabolite & Time dependent inhibition of CYP</td>
<td>(+) time-dependent inhibitor of CYP3A4/5</td>
<td>(-) time dependent inhibition</td>
<td>(+) time dependent inhibition of CYP2C8 and CYP2C9</td>
</tr>
<tr>
<td>Metabolite covalent-binding or glutathione trapping</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>DILI score</td>
<td>6.54 (RM = yes)</td>
<td>3.17 (RM = no)</td>
<td>6.75 (RM = yes)</td>
</tr>
</tbody>
</table>
Summary

- CIVM data could directly or indirectly inform clinical diagnoses of DILI pre- and post-market.
- The DILI Team is supportive of CIVM development.
The DILI Team

DILI Team
- Paul H. Hayashi, MD, MPH
 - Team Lead
- Eileen Navarro, MD
 - Team Lead
- Ling Lan, MD, PhD
 - Clinical analyst
- Edwige Chiogo-Vouffo, PharmD, PhD
 - Non-clinical analyst