

Reproducibility and Industrialization of the *in vitro* Hollow-Fiber System (HFS-TB)

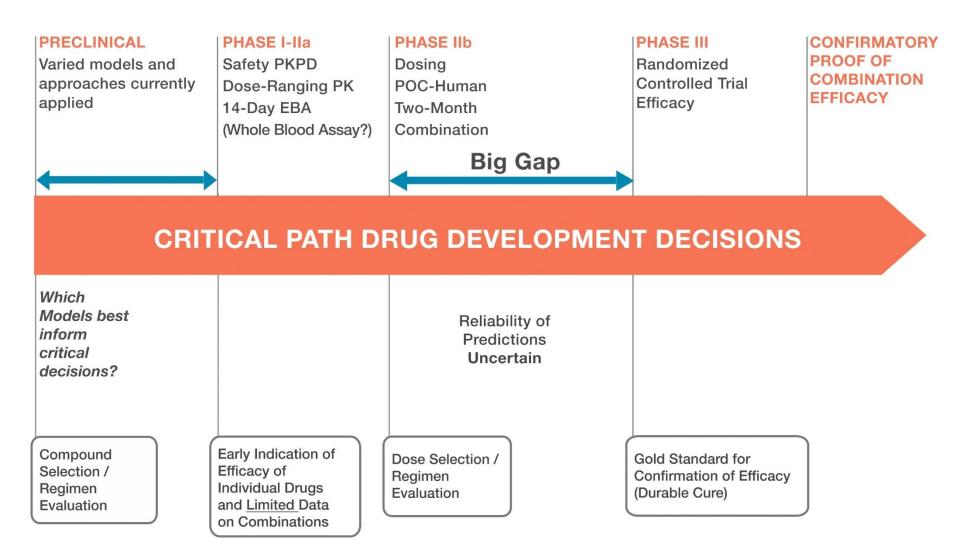
Debra Hanna, Executive Director, Critical Path to TB Drug Regimens 20 March 2017

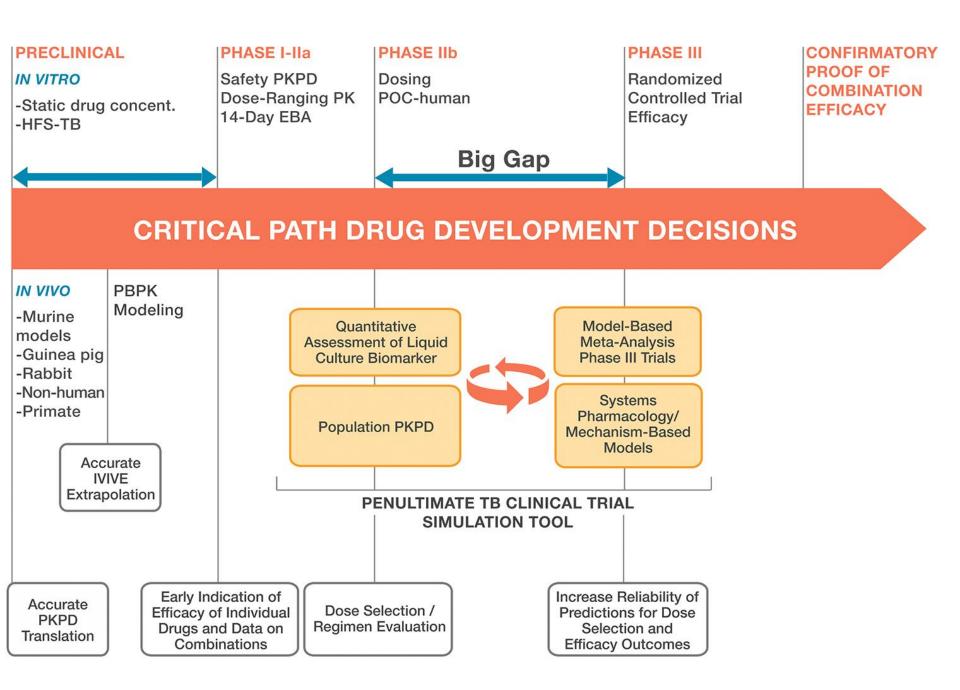
Outline

Critical Path to TB Drug Regimens Methodologies Landscape

- Methods landscape
- Academic approach to method development *versus*
- Methodologies designed as drug development tools

In vitro HFS-TB Model


- HFS-TB model system
- CPTR multi-stage assessment evidence-based approach
- Predictive accuracy assessment leading to EMA qualification for use


Reproducibility Assessment, Industrialization, Implementation

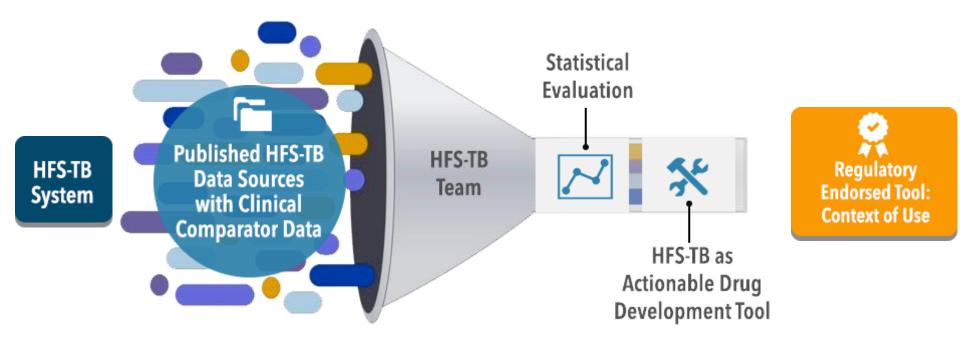
- Design and approach
- Summary results of experiments
- New work

Current TB Regimen Development Risk of Late-Stage Attrition

Mission

- Evidence-based evaluation of innovative drug development tools to address preclinical to clinical translation
- Focus on *in vitro* methodologies supporting efficacy and safety toxicology assessment
- Submission for regulatory endorsement

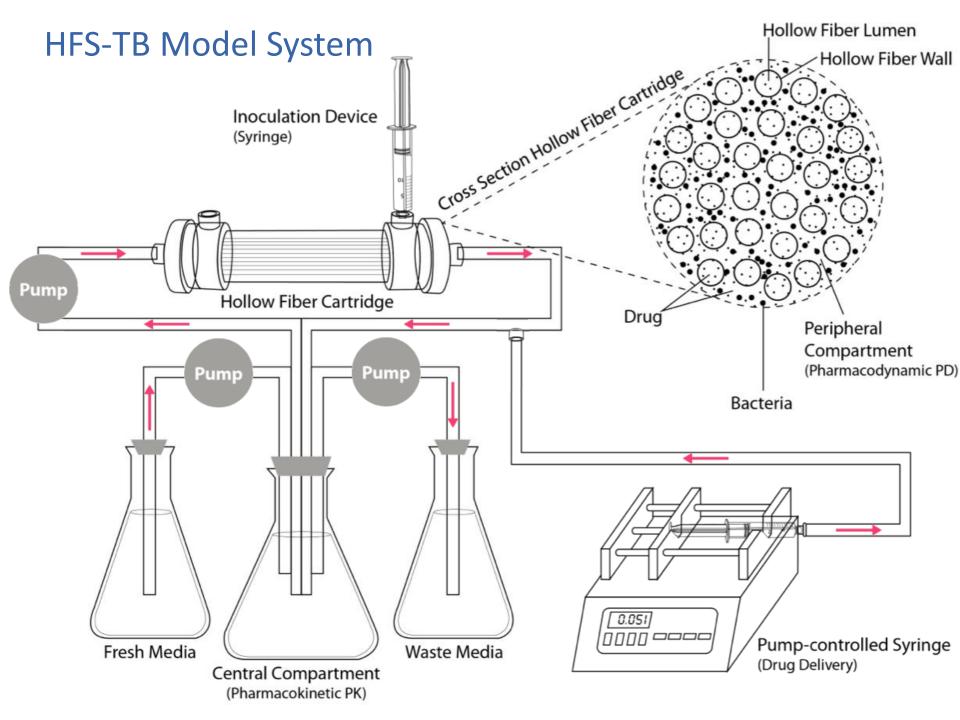
Goal


- Follow EMA and FDA Guidance on novel methodology and DDT qualification
- Gather all relevant published and unpublished data sources or aggregation
- Assess clinical translation of innovative preclinical novel methodologies/DDTs to test new TB drug candidates and regimens

HFS-TB Evidence

- Significantly more quantitative HFS-TB PKPD data available than for any *in vivo* methodology for TB
- Supported thorough assessment of predictive accuracy for clinical outcomes

Supportive Data Aggregation



	FEBRUARY 20, 2013	FEBRUARY 27, 2013	OCTOBER 16, 2013	NOVEMBER 15, 2013	FEBRUARY 4, 2014	
	LOI submission	LOI discussion	VXDS document submission	VXDS meeting	Submission of comments to FDA draft guidance	
EUROPEAN MEDICINES AGENCY	Briefing document submission (for qualification opinion)	SAWP meeting	Draft qualification opinion	Public comment period	Final qualification opinion	

- HFS-TB qualified for use in drug development programs as additional and complementary tool
- HFS-TB can be used in regulatory submissions, esp. for informed design and interpretation of clinical studies
- *HFS-TB is recommended to be useful as follows:*
 - To provide preliminary proof of concept for developing a specific drug or combination to treat tuberculosis
 - To select the pharmacodynamic target (e.g. T_{>MIC}, AUC/MIC)
 - To provide data to support PK/PD analyses leading to initial dose selection for non-clinical and clinical studies
 - To assist in confirming dose regimens for later clinical trials taking into account human PK data and exposure-response relationships

HFS-TB Inputs and Outputs

INPUTs

- Human PK
 Parameters
- Static, in vitro MICs or in vivo preclinical PK/PD

Experimental Conditions

- Monotherapy, Combinations, Staged
- Log-Growth
- Semi-Dormant
- Intracellular
- Future: Mimic granuloma or lung tissue PK and growth condition
- Dynamic, longitudinal

OUTPUTs

- PDI, Dose Fractionation
- Target Clinical Dose
- Additive/Synergistic/ Sub-additive
- Rate of killing
- Rate of resistance
 emergence
- Rank regimens
- EBA slope prediction
- SSCC prediction
- ADR prediction

Outline

Critical Path to TB Drug Regimens Methodologies Landscape

- Methods landscape
- Academic approach to method development *versus*
- Methodologies designed as drug development tools

In vitro HFS-TB Model

- HFS-TB model system
- CPTR multi-stage assessment evidence-based approach
- Predictive accuracy assessment leading to EMA qualification for use

Reproducibility Assessment, Industrialization, Implementation

- Design and approach
- Summary results of experiments
- New work

Objectives

 Characterize signalto-noise in HFS-TB system under all growth conditions

• Jan 2014-Feb2016

Design 162 Experiments

- 6 Treatment arms
 - Positive control = HRZE
 - REMox1 = MRZE
 - REMox2= HRZM
 - High Dose MRZ
 - H 3 days = MRZ
 - Untreated Control
- 3 Growth Conditions
 - Log
 - Semi-dormant
 - Intracellular
- 3 Teams
 - Leader + 4 laboratorians
- All Expts in Triplicate

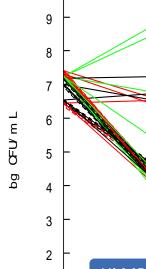
Experimental Questions

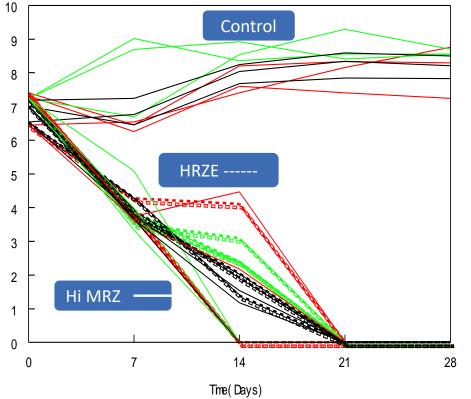
- Variability in PK measurement
 - Intra and inter experiment
 - Ability to achieve targeted AUC and Cmax
- Variability in kill rates
 - Across growth phases

System Reliably Achieves Targets for Cmax and AUC

Drug	PK parameter	Target	Observed Mean ±SD	%CV	MAPE (%)	% Accuracy (95% Cl)	% Bias (95% Cl)	
INH	Peak (mcg/mL)	6.80	6.65±0.29	4.03	3.87	96.10 (95.40-96.90)	2.19 (1.32 to 3.06)	
INH	AUC ₀₋₂₄ (mcg*hr/mL)	24	25.80±1.30	5.05	8.07	91.90 (90.90-93.00)	-7.58 (-8.75 to -6.38)	
RIF	Peak (mcg/mL)	6.0	6.1±0.11	1.75	1.50	98.00 (98.00-99.00)	-1.17 (-1.58 to -0.80)	
RIF	AUC ₀₋₂₄ (mcg*hr/mL)	22	25.00±1.30	5.45	12.00	88.00 (87.00-89.00)	-11.81 (-13.19 to -10.45)	
Hi RIF	Peak (mcg/mL)	18.0	18.00±0.30	1.65	1.8	98.0 (98.00-99.00)	1.67 (-2.17 to -1.22)	
Hi RIF	AUC ₀₋₂₄ (mcg*hr/mL)	66.0	70.00±2.90	4.11	6.50	93.00 (92.00-95.00)	-6.36 (-7.27 to -5.00)	
PZA	Peak (mcg/mL)	54	50.0±0.11	3.48	7.35	92.60 (91.90-93.40)	7.94 (7.18 to 8.72)	
PZA	AUC ₀₋₂₄ (mcg*hr/mL)	390	430±29.5	6.85	10.80	89.20 (87.70-90.70)	-9.53 (-11.95 to -8.62)	
Hi PZA	Peak (mcg/mL)	108	99.50±2.88	2.89	7.85	92.10 (91.40-92.90)	7.85 (7.13 to 8.58)	
Hi PZA	AUC ₀₋₂₄ (mcg*hr/mL)	7 <mark>80</mark>	815.0±56.90	6.98	6.08	93.90 (92.30-95.50)	-4.43 (-6.42 to -2.44)	

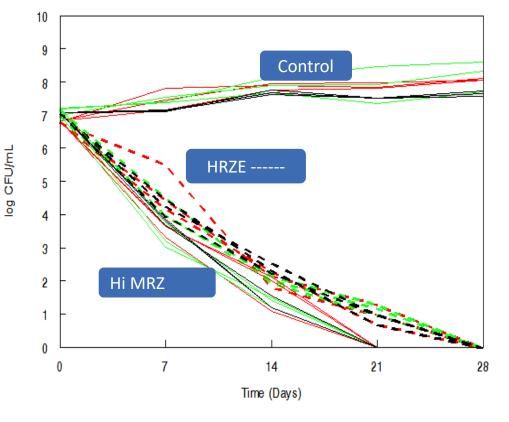
Results: HFS-TB REMox Reproducibility


System Reliably Achieves Targets for Cmax and AUC


Drug	PK parameter	Target	Observed Mean ±SD	%CV	MAPE (%)	% Accuracy (95% CI)	% Bias (95% CI)	
E	Peak (mcg/mL)	6.30	6.29±0.07	1.18	0.88	99.10 (98.90-99.30)	0.11 (-0.22 to 0.43)	
E	AUC ₀₋₂₄ (mcg*hr/mL)	23	22.50±0.55	2.44	2.72	97.30 (96.80-97.80)	2.34 (1.68 to 2.99)	
M	Peak (mcg/m <mark>L)</mark>	4.2	4.10±0.09	2.16	2.66	97.30 (96.90-97.80)	2.30 (1.73 to 2.88)	
M	AUC ₀₋₂₄ (mcg*hr/m <mark>L</mark>)	45	42.30±2.80	6.60	7.50	92.50 (91.40-93.60)	5.93 (4.24 to 7.62)	
Hi M	Peak (mcg/mL)	8.4	8.13±0.20	2.50	3.39	96.60 (96.0-97.20)	3.20 (2.54 to 3.86)	
Hi M	AUC ₀₋₂₄ (mcg*hr/mL)	90	84.50.±4.88	5.70	6.45	93.50 (92.20-94.90)	6.14 (4.67 to 7.62)	

Log Phase Time Course

(Control, HRZE, High Dose MRZ)



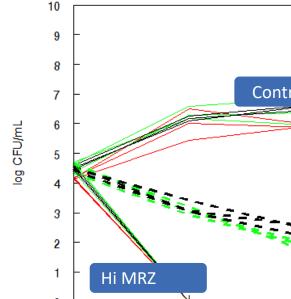
- All teams found equivalent results ٠ for the different groups
- The HRZE and High MRZ groups ٠ showed a marked difference against the untreated control
- However, the HRZE and High MRZ groups achieved similar treatment effects

*Updated 20JAN2017

Semi-Dormant Time Course

(Control, HRZE, High Dose MRZ)

- As in the Log-Phase condition, the experimental teams found equivalent results for the different groups
- The HRZE and High MRZ groups showed a marked difference against the untreated control
- However, the HRZE and High MRZ groups achieved similar treatment effects
- Given the reduced bacterial activity in semi-dormant condition, the overall variability in results was reduced across groups


*Updated 20JAN2017

Intracellular Time Course

(Control, HRZE, High Dose MRZ)

Control HRZE -0 7 14 21 28 0 Time (Days)

- The results were consistent across teams
- The HRZE and High MRZ groups • showed a marked difference against the untreated control
- However, unlike in the other two ٠ metabolic conditions, the intracellular experiments showed a marked difference between all three groups, favoring the High MRZ regimen

When to Apply HFS-TB

✓To provide preliminary proof of concept for developing a specific drug or combination to treat tuberculosis

✓ To select the pharmacodynamic target (e.g. T/MIC, AUC/MIC)

✓ To provide data to support PK/PD analyses leading to initial dose selection for non-clinical and clinical studies, with the aim of limiting the number of regimens that are to be tested in vivo

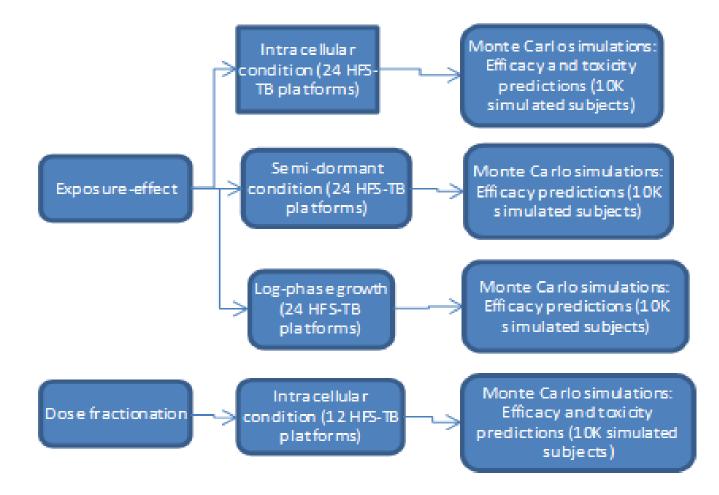
✓ To assist in confirming dose regimens for clinical trials taking into account the accumulated human PK data in healthy volunteers, patients 7 available information on exposure-response relationships

New HFS-TB Work

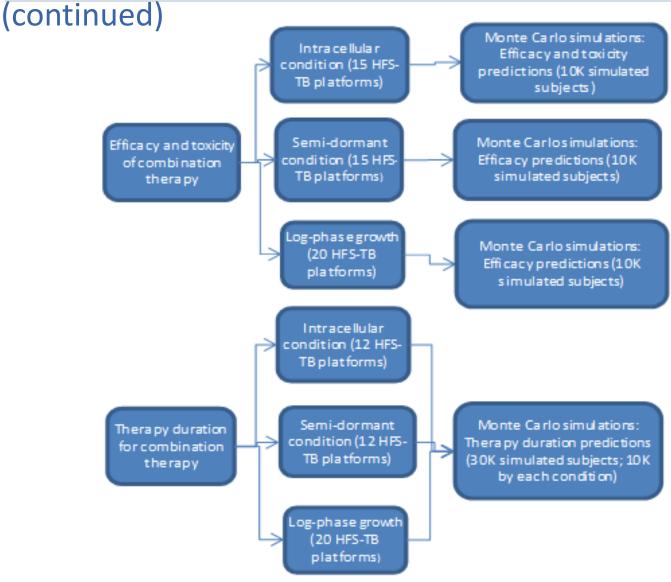
- Prospective combination studies (1000 + HFS TB Units)
 - Ex: PaMZ

 New, emerging drugs of interest aligning with Pharma and TB Accelerator partners

• Expand capacity with partner lab



Thank you


A special thank you to the Baylor laboratory team and the CPTR Pre-Clinical and Clinical Sciences Workgroup

HFS-TB New Work Experimental Schema

Critical Path to HFS-TB Stage New Work Experimental Schema TB Drug Regimens

Summary Points

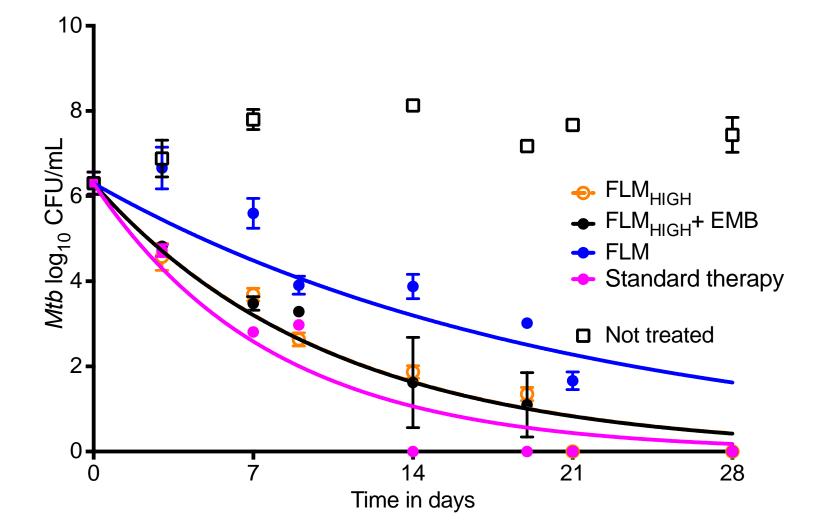
- Initial step to address the "translational gap" is to learn what data from what models analyzed in what way informs key trial design decisions
- Evidence-based validation of preclinical models is important:
 - To confidently place preclinical models on the critical development path
 - To increase the efficiency of regulatory interactions
 - To set a precedent for objective, data-driven process to apply to other models and tools (e.g., C3HeB/FeJ mouse, marmoset)
 - To identify/clarify knowledge and tool gaps to drive future research
- The successful HFS-TB qualification process has accomplished each of these goals
- Evaluation of sterilizing mouse model is the appropriate next step, with other models to follow

- Analysis Objective to determine predictive accuracy of HFS-TB outputs for clinical trial results
- Literature Search to identify relevant HFS-TB and clinical data from published literature
- Systematic Review to summarize HFS-TBgenerated hypotheses and outcomes of clinical trials
- Quality of Evidence Scoring to provide basis for weighting in the predictive accuracy analysis
- Statistical Analysis comparing HFS-TB predictions with clinical findings to examine:
 - descriptive correlations where HFS-TB studies post-dated clinical studies
 - predictive accuracy where HFS-TB studies pre-dated clinical studies

Unified Development Pathway

Stage	Preclinical	Phase 1		Phase 3			
Testing Model	In vitro/vivo GLP Tox	Healthy Subjects SAD / MAD	Phase 2A 14-Day Monotherapy EBA	Phase 2A 14-Day Combination EBA	Phase 2B 2-Month SSCC Study	Noninferiority	
Study Attributes	 MIC Mouse 4wk Mouse 8wk Mouse Relapase Kramnik Mouse GLP Tox 	 Single and repeat dose Safety, tolerability PK Drug Interactions Food Effect 	 Monotherapy Dose/Regimen (BID/QD) ranging DS patients n=20/arm 	 Combination Finding Some Dose Ranging Test Regimens vs HRZE DS patients n=20/arm 	 Leading Combo(s) vs HRZE in DS N=40-60/arm <i>Culture Conversion Better than HR</i> 	 In DS Short vs HRZE for non-inferiority in durable cure 1y after treatment Include MRD arm for consistency with DS and superiority vs Hx relapse rates n=300-500/arm 	
		When HFS-TB?		How much better to support regimen shortening?			

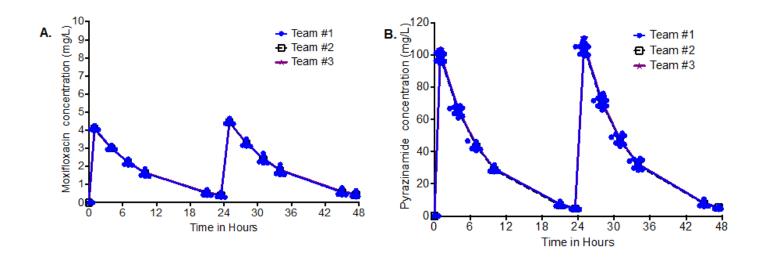
HFS-TB Stage II – Project Plan


	Intracellular	SDB	Log- phase	# of experiments	# HFS	Time in weeks	Start Date	End Date
PaMZ	9	9	15	3	33	8	1/2/2017	2/24/2017
Del PK	8	5	5	3	18	1	2/27/2017	3/6/2017
Del	36	24	24	3	84	8	2/27/2017	4/21/2017
OPC-167832	36	24	24	3	84	8	4/24/2017	6/16/2017
Break						2	6/19/2017	6/30/2017
OPC-167832 + Del	36	24	24	3	84	8	7/3/2017	8/25/2017
OPC-167832 + Del + Oxa	36	24	24	3	84	8	8/28/2017	10/20/2017
Del & Ba	36	24	24	3	84	8	10/23/2017	12/8/2017
OPC-167832 + Del + Ba	36	24	24	3	84	8	12/11/2017	2/2/2018
Break						2	2/5/2018	2/16/2018
Sutezolid	36*	24	24	3	84	8	2/19/2018	4/13/2018
BaPZ	9	9	15	3	33	8	4/16/2018	6/8/2018
Oxa + Far + Del	18	18	30	3	66	8	6/11/2018	8/3/2018
Break						2	8/6/2018	8/17/2018
Oxa + Pa + Ba	18	18	30	3	66	8	8/20/2018	10/12/2018
AZD5847	36	24	24	3	84	8	10/15/2018	12/7/2018
Oxa + Far + Pa	18	18	30	3	66	8	12/10/2018	2/1/2019
Break						2	2/4/2019	2/15/2019
Oxa + Pa + Ba + Far	15	15	20	3	50	8	2/18/2019	4/12/2019
Oxa +M + Far + Z	15	15	20	3	50	8	4/15/2019	6/7/2019
Final Report Preparation						8	6/10/2019	8/1/2019
TOTAL	362	299	357	48	1054	137		

Critical Path to

TB Drug Regimens

New Regimen Design: "FLAME"


Deshpande et al. A faropenem, linezolid, and moxifloxacin regimen for both drug susceptible and multidrug-resistant tuberculosis in children. Clin Infect Dis. 2016;63:S95

HFS-TB REMox Reproducibility Assessment TB Drug Regimens

- Objectives: Characterize reproducibility and signal to noise in HFS-TB system under different growth conditions (Jan 2014-Feb 2016)
- Design:
 - 6 treatment arms
 - Positive Control HRZE
 - REMox 1 MRZE
 - REMox 2 HRZM
 - Hi Dose MRZ
 - H 3 Days+Hi Dose MRZ
 - Control
 - Three conditions: Log-Phase, Semi-dormant, Intracellular
 - Three separate teams (Each team included a Team Leader and 4 supporting lab techs)
 - Each team runs each experiment in triplicate
 - Total of 162 HFS-TB experiments (6 regimens x 3 conditions x 3 teams x 3 replicates)

Results: HFS-TB REMox Reproducibility

- Critical Path to TB Drug Regimens
- Typical inter-day assay variability (CV%) is 5-10% for a PK assays
- In HFS experiments CV%s in drug concentration across time were typically (Passed Go / No Go)
- At end of dosing intervals for INH and RIF CV%s up to 25% were observed, however SDs remained consistent with other time points (e.g., this is a function of low mean conc where CV% is SD/mean)
- Variability in PK concentrations attributed to TEAM was very low across drugs (<0.1% of total variance).</p>
- Low variability expected due to administration via programmed syringe pump

