C-Path Capabilities

2018 CPAD Annual Meeting & Regulatory Science Workshop – November 13, 2018

Klaus Romero, Director, Clinical Pharmacology & Quantitative Medicine, Critical Path Institute
C-Path Successes

Data Science:
• Demonstrated experience in data sharing, management, standardization, curation, maintenance and security

Quantitative Science:
• Demonstrated track record in model-informed drug development, including biomarkers and outcome measures

Regulatory Science:
• Demonstrated impact in the transformation of the drug development process through strategic regulatory strategy
• **Baseline Total Kidney Volume (TKV)** is an independent, statistically significant and clinically relevant predictor of kidney function decline.

• **The joint TKV-kidney-function model** accounts for all captured relevant sources of variability together.

Clinical Trial Planning Example
30% Worsening of eGFR

<table>
<thead>
<tr>
<th>Age</th>
<th>TKV</th>
<th>Follow-Up Period</th>
<th>1-Probability of 30% Worsening of eGFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td></td>
<td>Median</td>
</tr>
<tr>
<td>Baseline</td>
<td>TKV 1.7L</td>
<td>1</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Optimizing patient selection in early motor PD

Average monthly progression in the harmonized score (point/month):

- SWEDD = 0.05 (90% CI: -0.04, 0.13)
- DAT-deficient = 0.18 (90% CI: 0.14, 0.21)
- Difference = -0.13 (90% CI: -0.23, -0.04), one-tailed P-value=0.01

Average difference in the change from baseline of motor scores at 24 months between SWEDD and DAT-deficient subjects (points):

- -3.16 (90% CI: -0.96, -5.42)

DAT Enrichment allows ~24% Reduction of Trial Size to detect a Disease-modifying Drug Effect with 80% Power

Under these assumptions:
- 24-month placebo-controlled trials.
- Enriched trials had only subjects with DAT deficit, while non-enriched trials included 15% of SWEDD.
- Disease-modifying drug effect of 50% reduction in the progression rate.
- Power was calculated as the proportion of trials for which the parameter estimate for the interaction between time and treatment showed a beneficial drug effect with a two-tailed P-value < 0.05.

Understanding the entire disease continuum: Duchenne Muscular Dystrophy

Intent is to develop a quantitative drug development tool that describes the following:

Longitudinal FVC Model
- Covariates of interest:
 - Anthropomorphic measures
 - Baseline severity
 - Steroid use

Parametric TTE models
- Clinically Relevant Endpoints:
 - Functional milestones
 - Ambulation milestones
 - Respiratory milestones
Duchenne Disease Progression Model

Preliminary results

FVC vs. Age across all studies

- Forced Vital Capacity (L)
- Age (Years) at FVC measurement

flag
- >=7 years old
- <7 years old
C-Path Successes

Pre-defined cutoff points:

• Not needed if full distribution of quantitative biomarker is modeled as a continuous covariate.

Cutoff definition:

• Can be done in a trial-specific manner, based on simulations, given a robust quantitative understanding of disease progression.

Advantage:

• Optimized efficiency for the specific context of a given drug development program.
So...

\[S = f(t, p) \]
Thank You