Model-Informed Biomarker Qualification: Alzheimer and Parkinson Disease Imaging Biomarkers

Daniela J Conrado1, Jackson Burton2, Timothy Nicholas3, Brian Corrigan2, Kuenhi Tsai2, Danny Chen2, Vikram Sinha2, Sreeraj Mada2, Julie Stone2, Brian Willis4, Ian Watson5, Massimo Bani2, Pierandrea Muglia2, Wenping Wang2, Volker D Kern2, Stephen Arneric3, Diane Stephenson1, Klaus Romero1 on behalf of the Coalition Against Major Diseases (CAMD) and Critical Path for Parkinson’s (CPP)

1Critical Path Institute (C-Path), Tucson, AZ; 2Pfizer, Groton, CT; 3Merck, North Wales, PA; 4Eli Lilly, Indianapolis, IN; 5UCB, Brussels, Belgium; 6Novartis, East Hanover, NJ

Background

- Disease-modifying/preventative treatments for Alzheimer disease (AD) and Parkinson disease (PD) are expected to be most effective at early disease stages.
- Early stage selection of the right subjects is challenging due to pathophysiological uncertainty or patient heterogeneity.
- Here, we present pharmacometric analyses examining the enrichment utility of intracranial-adjusted-hippocampal volume (ICV-HV*) for mild cognitive impairment (MCI), and dopamine transporter (DAT**) neuroimaging for early stage PD trials, respectively (Figure 1).

Methods

- Data: C-Path assembled subject-level, longitudinal, CDISC-standardized datasets.
 - Early stage PD: data came from the Parkinson’s Disease Progression Markers Initiative (PPMI) observational study and from the Parkinson Research Examination of CE-1347 trial (PRECEPT) (Ref. 3).
 - MCI: data from 1093 subjects came from the Alzheimer’s Disease Neuroimaging Initiative-1 (ADNI-1), ADNI-2 observational studies and the investigation into Delay to Diagnosis of Alzheimer’s disease with Exelon (INDSEx) clinical trial.
- Endpoint:
 - Early stage PD: Harmonized Part III score of the Movement Disorder Society Unified PD Rating Scale (MDS-UPDRS, or motor scores) (Ref. 1).
 - MCI: Clinical Dementia Rating–Sum of Boxes (CDR-SB).
- Model:
 - Early stage PD: Mixed-effects model to estimate and compare the endpoint rate of progression between subjects with a scan without evidence of DAT deficit (SWEDD) and those with DAT deficit (Ref. 1).
 - MCI: Mixed-effects beta regression model to estimate and compare the endpoint rate of progression between subjects with ‘high’ and ‘low’ ICV-HV values based on various cut-offs.
- Enrichment: Utility of biomarker enrichment was determined by various model outputs including statistical and clinical significance of the estimated covariate effect, and reduction in trial size by Monte Carlo simulations (Ref. 1).

Results

- The selected base models to describe the progression of early stage PD and MCI are described in Table 1.
- Predictors of rate of progression in early stage PD and MCI are presented in Table 2.

Results (cont.)

- Early stage PD:
 - Subjects with and without DAT deficit have an average monthly progression in scores of 0.65 (90% CI: 0.14, 0.21) and 0.05 (90% CI: 0.04, 0.13) point/month, respectively (Figure 2A; Ref. 1).
- Under reasonable assumptions, a DAT-based enrichment strategy allowed a ~24% reduction of trial size to detect a drug effect of 50% reduction in progression rate with 80% probability at α=0.05 (Figure 2B; Ref. 1).

Obtain regulatory qualification of enrichment biomarkers that select subjects most likely to exhibit clinically relevant disease progression.

Objective

- Results for ICV-HV in MCI are preliminary and subject to modifications.
- Results for DAT in early stage PD have been published at Ref. 1.

References:

Conclusions

- Model-informed analyses of potential enrichment biomarkers can streamline the pathway towards regulatory qualification, and improve clinical trial design efficiency.

Table 1. Selected base models

<table>
<thead>
<tr>
<th>Disease</th>
<th>Model</th>
<th>Structure</th>
</tr>
</thead>
</table>
| Early stage PD | Linear** | \[
\frac{d\text{Score}}{dt} = \beta_0 + \beta_1 \times \text{Score} \times (1 - \frac{\text{Score}}{\text{Score}_\text{MAX}})^6
\] |
| MCI | Generalized logistic (Richards)*** | \[
\frac{d\text{ICV-HV}}{dt} = -\frac{\text{ICV-HV}}{\text{ICV-HV}_\text{MAX}} + \frac{\text{ICV-HV}_\text{MAX}}{1 + \left(\frac{\text{ICV-HV}}{\text{ICV-HV}_\text{MAX}}\right)^6}
\] |

**Details are provided at Ref. 1.
***Details on the Richards model can be found at Ref. 4.

Table 2. Predictors of rate of progression

<table>
<thead>
<tr>
<th>Disease</th>
<th>Rate Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early stage PD</td>
<td>DAT deficit status: yes or no</td>
</tr>
<tr>
<td>MCI</td>
<td>ICV-HV, age, gender, MMSE, APOE ε4 genotype</td>
</tr>
</tbody>
</table>

Figure 2. DAT imaging enrichment in early stage PD

- (A) Simulation of the enrichment criterion. (B) Statistical power vs. sample size. Simulated placebo-controlled DAT imaging enriched and non-enriched clinical trials with a drug effect of 50% reduction in the progression rate (HV = 2.08 reductions).

- MCI:
 - ICV-HV values (cm³) related to the rate of CDR-SB progression via a linear function, and the estimated effect was -0.884 (95% CI: -1.30, -0.47). This means that for each 1 cm³ decrease in the ICV-HV, the progression rate increases by ~88% (Figure 3).
 - ICV-HV enrichment (inclusion of subjects with ICV-HV < 5.25 cm³) allowed a sample size per arm of ~200 (vs. ~500 without enrichment) in a 2-year parallel arm study design to detect a drug effect of 50% reduction in rate with 80% probability at α=0.05.

Figure 3. Visual predictive check stratified by ICV-HV.

- 520 cm³ is the mean ICV-HV value of the dataset. Outliers have been included. One thousand simulations were performed. Open circles are observed data; solid lines are the 25th, 50th and 90th percentiles of the observed sample; shaded areas are the 5% and 95% percentiles of the simulations.

Acknowledgments: CAMD: This work was supported, in part, by grant number 1U18FD0055320 from the U.S. Food and Drug Administration’s Critical Path Public Private Partnerships Grant, and members including: AbbVie Inc., Alzheimer’s Association, Alzheimer’s Drug Discovery Foundation, Alzheimer’s Research UK, Boehringer Ingelheim, CHDI Foundation, Eisai, F. Hoffmann-La Roche, Janssen, Eli Lilly and Company, Merck Sharp & Dohme, Novartis Pharmaceuticals Corporation, Pfizer Inc., Takeda Pharmaceuticals, and Ukenji/Alzheimer’s CPP. The authors acknowledge the support of Parkinson’s UK and the CPP member organizations. CPP recognizes Teva for contributing the PRECEPT patient-level data, the PRECEPT study investigators for their role in leading the study, Molecular Neuroimaging for their efforts in analyzing the imaging results from both PRECEPT and PPMI, and the Michael J. Fox Foundation for funding of PPMI. Data were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date information on the study, visit www.ppmi-info.org. PPMI – a public-private partnership – is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including AbbVie, Avid, Boehringer-Ingelheim, Covance, Delphi HealthCare, Genentech, GlaxoSmithKline, Janssen, Lilly, Lundbeck, Merck, Meade-Scjöde Discovery, Pfizer, Praramit, Roche, Sanofi Genzyme, Servier, TEVA, UCB, and Gubel Capital.

Figure 1. Candidate enrichment biomarkers in (A) MCI, and (B) PD.

ICV-HV is determined by magnetic resonance imaging (MRI). DAT deficit is determined by single-photon emission computed tomography (SPECT).