Background

- The Coalition Against Major Diseases (CAMD), a public-private partnership, previously developed a regulatory-endorsed FDA (1 & EMA) clinical trial simulation tool (CTS) for Alzheimer’s disease (AD), using integrated standardized data from control arms of legacy trials in mild to moderate AD.
- Contemporary datasets acquired within CAMD after the initial regulatory endorsement warrant an update of the CTS.

Objectives

- Acquire, standardize, and integrate contemporary patient-level datasets into the CAMD database according to the Clinical Data Interchange Standards Consortium (CDISC) standards.
- Utilize expanded database to update the existing CTS for mild-to-moderate AD using a Bayesian mixed effects modeling framework.

Methods

Data Sharing Initiative (Figure 1):

- Consortia, such as CAMD, are initiated by collaborating with stakeholders to address an unmet medical need.
- Research questions are framed and data sources are identified.
- Acquisition of relevant data sets from data contributors is initiated with a legally binding data contribution agreement.
- An encrypted transfer is used to send data to a secure storage server.
- A comprehensive data remapping effort to CDISC standards is performed in conjunction with a thorough data curation.
- Standardized data sets are integrated into the consortium database.

Figure 1. Schematic of an expanded data sharing initiative such as CAMD

Source: Dj Corrigan, AO Karlsson, K Romero, C Sarris, J Wilkins. Open Innovation: towards sharing of data, models and workflows. Eur J Pharm Sci. 2017 (pub ahead of print)

Results

Expanded database overview:

- The contemporary CAMD database contains 15 studies of control data from legacy trials, an increase of 6 studies since the development of the original CTS (Table 1).

Table 1. Summary level statistics comparing original and contemporary CAMD database

<table>
<thead>
<tr>
<th>Variable</th>
<th>Original database</th>
<th>Expanded database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of studies</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Individuals</td>
<td>3255</td>
<td>4575</td>
</tr>
<tr>
<td>Mean age</td>
<td>73.9</td>
<td>74.1</td>
</tr>
<tr>
<td>% female</td>
<td>55.1%</td>
<td>55.4%</td>
</tr>
<tr>
<td>Mean years since dx</td>
<td>2.07</td>
<td>2.46</td>
</tr>
<tr>
<td>Mean baseline ADAScog</td>
<td>23.4</td>
<td>24.0</td>
</tr>
<tr>
<td>Info on number of APOE4 alleles</td>
<td>1486</td>
<td>1895</td>
</tr>
<tr>
<td>Concomitant medication info</td>
<td>2483</td>
<td>3271</td>
</tr>
</tbody>
</table>

Envisioned outcome

- A completed update of the CTS will involve the following milestones:
 - Separation of natural progression and placebo effect component by incorporating observational longitudinal data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
 - Confirm the additive allele effect of APOE4 and background medication use related finding with the ADNI data.
 - Develop a user-friendly interface to provide accessibility of the tool to all members of a clinical development team.

- Regulatory endorsement for the updated CTS will be pursued in order to provide the most up to date tool for clinical trial design and simulation for mild to moderate AD.

References