Emerging biomarkers of liver injury: from miR-122 to liquid biopsies

Shelli Schomaker
Pfizer, Groton, CT
shelli.j.schomaker@pfizer.com
Why do we need a new biomarker of liver injury in drug development?

- Transient small ALT increases in clinical trials are relatively common
- Hepatic or extra-hepatic origin of ALT?
 - Underlying muscle disease eliminates ALT as biomarker of DILI
- Metabolism, life style
- Sensitive populations

Example: PhI MAD

![Graph showing ALT over time with dosing and phasing](chart)
Challenges

Current status

• Conventional biomarker-based DILI diagnostic paradigm detects liver injury only after substantial (sometimes irreversible) damage has occurred.
 - ALT is sensitive enough but not specific enough
 - Bilirubin is not sensitive enough but specific enough

Gaps

• Sensitive and specific biomarkers that detect DILI before substantial or irreversible damage has occurred
• Biomarkers with better prognostic value (transient vs progressive increase/damage)
• Translational biomarkers (improve DILI risk assessment in preclinical species)
• Early identification of individuals susceptible to idiosyncratic DILI
miR-122

Small non-coding RNAs that negatively regulate gene expression at the post-transcriptional stage

Serum miR-122 is liver-specific, not found in muscle

Clinical Relevance:
- Potentially more sensitive than ALT
- Elevated in patients with drug-induced liver injury
- Elevated in patients with disease-induced liver injury
- Correlates to histopathology severity score

Current Clinical application:
- Research/exploratory use only
- Requires broad clinical validation
- Clinical qualification by regulatory agencies needed for use in drug development
Challenges in Clinical Translation of Emerging Safety Biomarkers

• Human studies mirroring preclinical toxicity studies generally cannot be conducted
 - Treatments with a wide variety of known toxicants is not possible
 - Regular histopathology (i.e., biopsy) of target organs would not be practical

• Assessing biomarker performance in human studies is difficult
 - Benchmarking against histopathology or current biomarkers is generally impossible or complicated

• Access to human samples of acute drug-induced organ failure is limited

• Funding for clinical translational studies
 - HESI, PSTC, IMI-SAFE-T
Clinical Translation of Safety Biomarkers

• General themes that can be addressed
 - Baseline biomarker values across genders and age and ethnic groups
 - Assess prognostic / diagnostic threshold values

• Study considerations
 - Monitoring biomarker performance in human disease that approximates drug-induced injury
 - Monitoring biomarker performance in standard treatments that are known to carry a risk of injury
 • Acetaminophen hepatotoxicity

• Study design
 - Prospective
 • Clinical trial design required, consortia, large funding needed
 - Retrospective
 • Discard (left over) samples; close collaboration with clinicians, economical and relatively fast
Study design

• Sample collections*
 - Healthy subjects - volunteers from PhI clinical trials
 • Medical exam at the time of sample collection
 - Healthy subjects (UoM) with normal levels of liver injury biomarkers and no signs of liver disease in medical history
 - Subjects with range of liver diseases
 - Subjects diagnosed with APAP overdose

• Analytical measurement of DILI biomarkers
 - Automated assays

• Data analysis
 - Effect of age, gender
 - ROC analysis
 • Liver injury defined using modified biochemical criterion of liver injury

* Research on human clinical trial subjects/samples was conducted in accordance with all applicable Pfizer policies, including IRB/IEC approval.
miR-122 levels in healthy subjects

<table>
<thead>
<tr>
<th>Gender</th>
<th>All Ages</th>
<th>Age < 20</th>
<th>Age 20-40</th>
<th>Age 41-60</th>
<th>Age > 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>40-3602</td>
<td>N = 0</td>
<td>N = 20</td>
<td>N = 47</td>
<td>N = 33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40-5340</td>
<td>40-2697</td>
<td>40-3766</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>40-6927</td>
<td>N = 11</td>
<td>N = 69</td>
<td>N = 97</td>
<td>N = 55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40-9136</td>
<td>40-3470</td>
<td>40-4844</td>
<td>40-3502</td>
</tr>
</tbody>
</table>

Upper limit of normal = 6333 copies/ul (n=333)
Correlation of miR-122 and ALT

$r_s = 0.72$

(n=737)
Performance of miR-122 to detect liver injury

Liver injury defined as 5x ALT or 2x ALP or 3x ALT/2x Tbil.

n= 737

ROC area = 0.907
miR-122 - potential biomarker of Liver Injury

Correlation of miRNA122 vs. ALT

Liver Transplant Subjects

Healthy Subjects

APAP Overdose Subjects

N = 72
29 Healthy + 43 Liver Injury

N = 72
29 Healthy + 43 Liver Injury
Liquid biopsy - Signatures of circulating miRs

From cells to animal studies to clinic
Hypothesis

• Profiles (signatures) of circulating miRs reflect mechanistic information about toxicity, disease

• miR signatures might be useful for:
 - understanding tox effect
 - Diagnosis of disease
 - Susceptible populations
 - Patient stratification
Proof of concept studies

1. miR signature of APAP overdose

![Image]

Application of High-Throughput Sequencing to Circulating microRNAs Reveals Novel Biomarkers for Drug-Induced Liver Injury

Julian Krauskopf*, Florian Caiment*, Sandra M. Claessen*, Kent J. Johnson†, Roscoe L. Warner†, Shelli J. Schomaker‡, Deborah A. Burt‡, Jiri Aubrecht‡, and Jos C. Kleinjans*

*Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands, †Pathology Department, University of Michigan, Ann Arbor, Michigan 48109 and ‡Drug Safety Research and Development, Pfizer, Inc., Groton, Connecticut 06340

2. miR signatures of liver diseases
1. miR signatures of APAP Overdose- Study design

24 samples

- 6 APAP Overdose
- 6 Normal

- 6 samples
- 2 samples
- 2 samples
- 2 samples
- 2 samples
- 4 samples
Circulating miR profiles differentiate APAP-induced liver injury
NGS Identified Known Liver Injury Associated miRs

miR122

miR192
miRs time course patterns cluster with conventional biomarkers

miRNAs with a similar pattern of response as GLDH

miRNAs with a similar pattern of response as Tbil

miRNAs with a similar pattern of response as ALT and AST

Biomarkers not associated with liver injury

miRNAs with different pattern

Hierarchical Clustering Based on Spearman Distance
Biological significance of observed miRs

Liver-specific processes indicated by miRs are consistent with molecular mechanism of APAP toxicity
2. miR signatures of liver diseases

Hypothesis:
• miR “signatures” in serum can differentiate among variety of liver impairments including providing insights into pathophysiology of disease

• Study design:

54 subjects

9 APAP (DILI)

9 Liver cirrhosis (LC)

7 Hepatitis (HBV)

7 Diabetes (T2DM)

22 healthy (Control)
miR profiles differentiate among variety of liver impairments

Individual impairments show distinct miR signatures
miRs associated with Hepatitis
miRs associated with Diabetes

miR-375
mir-146
mir-29
mir-21
mir-221
mir-27
mir-18
mir-22
mir-19
mir-16
mir-130
mir-20
mir-9
mir-103
mir-320
Conclusions

• miR-122 alone will not replace conventional biomarkers (ALT/AST) for detection of DILI in clinic
 - miR-122 might potentially complement conventional biomarkers

• miR signatures have a potential to provide a fundamental advancement (paradigm shift) in non-invasive tool for evaluating liver injury and liver disease in clinic
Acknowledgments

Pfizer
 Jiri Aubrecht
 Deborah Burt
 Patricia Chandler
 David Potter

University of Michigan
 Kent Johnson
 Roscoe Warren

University of Maastricht
 Julian Krauskopf
 Florian Caiment
 Sandra Claessen
 Jos Kleinjans